Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.02.15.23286012

ABSTRACT

Importance The frequency and characteristics of post-acute sequelae of SARS-CoV-2 infection (PASC) may vary by SARS-CoV-2 variant. Objective To characterize PASC-related conditions among individuals likely infected by the ancestral strain in 2020 and individuals likely infected by the Delta variant in 2021. Design Retrospective cohort study of electronic medical record data for approximately 27 million patients from March 1, 2020-November 30, 2021. Setting Healthcare facilities in New York and Florida. Participants Patients who were at least 20 years old and had diagnosis codes that included at least one SARS-CoV-2 viral test during the study period. Exposure Laboratory-confirmed COVID-19 infection, classified by the most common variant prevalent in those regions at the time. Main Outcome(s) and Measure(s) Relative risk (estimated by adjusted hazard ratio [aHR]) and absolute risk difference (estimated by adjusted excess burden) of new conditions, defined as new documentation of symptoms or diagnoses, in persons between 31-180 days after a positive COVID-19 test compared to persons with only negative tests during the 31-180 days after the last negative test. Results We analyzed data from 560,752 patients. The median age was 57 years; 60.3% were female, 20.0% non-Hispanic Black, and 19.6% Hispanic. During the study period, 57,616 patients had a positive SARS-CoV-2 test; 503,136 did not. For infections during the ancestral strain period, pulmonary fibrosis, edema (excess fluid), and inflammation had the largest aHR, comparing those with a positive test to those with a negative test, (aHR 2.32 [95% CI 2.09 2.57]), and dyspnea (shortness of breath) carried the largest excess burden (47.6 more cases per 1,000 persons). For infections during the Delta period, pulmonary embolism had the largest aHR comparing those with a positive test to a negative test (aHR 2.18 [95% CI 1.57, 3.01]), and abdominal pain carried the largest excess burden (85.3 more cases per 1,000 persons). Conclusions and Relevance We documented a substantial relative risk of pulmonary embolism and large absolute risk difference of abdomen-related symptoms after SARS-CoV-2 infection during the Delta variant period. As new SARS-CoV-2 variants emerge, researchers and clinicians should monitor patients for changing symptoms and conditions that develop after infection.


Subject(s)
Pulmonary Embolism , Abdominal Pain , Dyspnea , COVID-19 , Inflammation , Pulmonary Fibrosis , Edema
2.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2592194.v1

ABSTRACT

Background Patients who were SARS-CoV-2 infected could suffer from newly incidental conditions in their post-acute infection period. These conditions, denoted as the post-acute sequelae of SARS-CoV-2 infection (PASC), are highly heterogeneous and involve a diverse set of organ systems. Limited studies have investigated the predictability of these conditions and their associated risk factors. Method In this retrospective cohort study, we investigated two large-scale PCORnet clinical research networks, INSIGHT and OneFlorida+, including 11 million patients in the New York City area and 16.8 million patients from Florida, to develop machine learning prediction models for those who are at risk for newly incident PASC and to identify factors associated with newly incident PASC conditions. Adult patients aged  20 with SARS-CoV-2 infection and without recorded infection between March 1st, 2020, and November 30th, 2021, were used for identifying associated factors with incident PASC after removing background associations. The predictive models were developed on infected adults. Results We find several incident PASC, e.g., malnutrition, COPD, dementia, and acute kidney failure, were associated with severe acute SARS-CoV-2 infection, defined by hospitalization and ICU stay. Older age and extremes of weight were also associated with these incident conditions. These conditions were better predicted (C-index >0.8). Moderately predictable conditions included diabetes and thromboembolic disease (C-index 0.7-0.8). These were associated with a wider variety of baseline conditions. Less predictable conditions included fatigue, anxiety, sleep disorders, and depression (C-index around 0.6). Conclusions This observational study suggests that a set of likely risk factors for different PASC conditions were identifiable from EHRs, predictability of different PASC conditions was heterogeneous, and using machine learning-based predictive models might help in identifying patients who were at risk of developing incident PASC. 


Subject(s)
Anxiety Disorders , Thromboembolism , Dementia , Pulmonary Disease, Chronic Obstructive , Depressive Disorder , Severe Acute Respiratory Syndrome , Diabetes Mellitus , Malnutrition , Acute Kidney Injury , COVID-19 , Sleep Wake Disorders , Fatigue
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.12.18.22283646

ABSTRACT

Background An increasing number of studies have described new and persistent symptoms and conditions as potential post-acute sequelae of SARS-CoV-2 infection (PASC). However, it remains unclear whether certain symptoms or conditions occur more frequently among persons with SARS-CoV-2 infection compared with those never infected with SARS-CoV-2. We compared the occurrence of specific COVID-associated symptoms and conditions as potential PASC 31 to 150 days following a SARS-CoV-2 test among adults ([≥]20 years) and children (<20 years) with positive and negative test results documented in the electronic health records (EHRs) of institutions participating in PCORnet, the National Patient-Centered Clinical Research Network. Methods and Findings This study included 3,091,580 adults (316,249 SARS-CoV-2 positive; 2,775,331 negative) and 675,643 children (62,131 positive; 613,512 negative) who had a SARS-CoV-2 laboratory test (nucleic acid amplification or rapid antigen) during March 1, 2020-May 31, 2021 documented in their EHR. We identified hospitalization status in the day prior through the 16 days following the SARS-CoV-2 test as a proxy for the severity of COVID-19. We used logistic regression to calculate the odds of receiving a diagnostic code for each symptom outcome and Cox proportional hazard models to calculate the risk of being newly diagnosed with each condition outcome, comparing those with a SARS-CoV-2 positive test to those with a negative test. After adjustment for baseline covariates, hospitalized adults and children with a positive test had increased odds of being diagnosed with [≥]1 symptom (adults: adjusted odds ratio[aOR], 1.17[95% CI, 1.11-1.23]; children: aOR, 1.18[95% CI, 1.08-1.28]) and shortness of breath (adults: aOR, 1.50[95% CI, 1.38-1.63]; children: aOR, 1.40[95% CI, 1.15-1.70]) 31-150 days following a SARS-CoV-2 test compared with hospitalized individuals with a negative test. Hospitalized adults with a positive test also had increased odds of being diagnosed with [≥]3 symptoms (aOR, 1.16[95% CI, 1.08 - 1.26]) and fatigue (aOR, 1.12[95% CI, 1.05 - 1.18]) compared with those testing negative. The risks of being newly diagnosed with type 1 or type 2 diabetes (aHR, 1.25[95% CI, 1.17-1.33]), hematologic disorders (aHR, 1.19[95% CI, 1.11-1.28]), and respiratory disease (aHR, 1.44[95% CI, 1.30-1.60]) were higher among hospitalized adults with a positive test compared with those with a negative test. Non-hospitalized adults with a positive SARS-CoV-2 test had higher odds of being diagnosed with fatigue (aOR, 1.11[95% CI, 1.05-1.16]) and shortness of breath (aOR, 1.22[95% CI, 1.15-1.29]), and had an increased risk (aHR, 1.12[95% CI, 1.02-1.23]) of being newly diagnosed with hematologic disorders (i.e., venous thromboembolism and pulmonary embolism) 31-150 days following SARS-CoV-2 test compared with those testing negative. The risk of being newly diagnosed with certain conditions, such as mental health conditions and neurological disorders, was lower among patients with a positive viral test relative to those with a negative viral test. Conclusions Patients with SARS-CoV-2 infection were at higher risk of being diagnosed with certain symptoms and conditions, particularly fatigue, respiratory symptoms, and hematological abnormalities, after acute infection. The risk was highest among adults hospitalized after SARS-CoV-2 infection.


Subject(s)
Pulmonary Embolism , Acute Disease , Respiratory Tract Diseases , Venous Thromboembolism , Dyspnea , Diabetes Mellitus, Type 2 , Hematologic Diseases , Nervous System Diseases , COVID-19 , Fatigue
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.10.13.22281010

ABSTRACT

Post-acute sequelae of SARS-CoV-2 infection (PASC) affects a wide range of organ systems among a large proportion of patients with SARS-CoV-2 infection. Although studies have identified a broad set of patient-level risk factors for PASC, little is known about the contextual and spatial risk factors for PASC. Using electronic health data of patients with COVID-19 from two large clinical research networks in New York City and Florida, we identified contextual and spatial risk factors from nearly 200 environmental characteristics for 23 PASC symptoms and conditions of eight organ systems. We conducted a two-phase environment-wide association study. In Phase 1, we ran a mixed effects logistic regression with 5-digit ZIP Code tabulation area (ZCTA5) random intercepts for each PASC outcome and each contextual and spatial factor, adjusting for a comprehensive set of patient-level confounders. In Phase 2, we ran a mixed effects logistic regression for each PASC outcome including all significant (false positive discovery adjusted p-value < 0.05) contextual and spatial characteristics identified from Phase I and adjusting for confounders. We identified air toxicants (e.g., methyl methacrylate), criteria air pollutants (e.g., sulfur dioxide), particulate matter (PM2.5) compositions (e.g., ammonium), neighborhood deprivation, and built environment (e.g., food access) that were associated with increased risk of PASC conditions related to nervous, respiratory, blood, circulatory, endocrine, and other organ systems. Specific contextual and spatial risk factors for each PASC condition and symptom were different across New York City area and Florida. Future research is warranted to extend the analyses to other regions and examine more granular contextual and spatial characteristics to inform public health efforts to help patients recover from SARS-CoV-2 infection.


Subject(s)
COVID-19 , Sleep Deprivation , Food Hypersensitivity
5.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.21.22275412

ABSTRACT

The post-acute sequelae of SARS-CoV-2 infection (PASC) refers to a broad spectrum of symptoms and signs that are persistent, exacerbated, or newly incident in the post-acute SARS-CoV-2 infection period of COVID-19 patients. Most studies have examined these conditions individually without providing concluding evidence on co-occurring conditions. To answer this question, this study leveraged electronic health records (EHRs) from two large clinical research networks from the national Patient-Centered Clinical Research Network (PCORnet) and investigated patients’ newly incident diagnoses that appeared within 30 to 180 days after a documented SARS-CoV-2 infection. Through machine learning, we identified four reproducible subphenotypes of PASC dominated by blood and circulatory system, respiratory, musculoskeletal and nervous system, and digestive system problems, respectively. We also demonstrated that these subphenotypes were associated with distinct patterns of patient demographics, underlying conditions present prior to SARS-CoV-2 infection, acute infection phase severity, and use of new medications in the post-acute period. Our study provides novel insights into the heterogeneity of PASC and can inform stratified decision-making in the treatment of COVID-19 patients with PASC conditions.


Subject(s)
COVID-19
6.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.21.22275420

ABSTRACT

Recent studies have investigated post-acute sequelae of SARS-CoV-2 infection (PASC) using real-world patient data such as electronic health records (EHR). Prior studies have typically been conducted on patient cohorts with small sample sizes 1 or specific patient populations 2,3 limiting generalizability. This study aims to characterize PASC using the EHR data warehouses from two large national patient-centered clinical research networks (PCORnet), INSIGHT and OneFlorida+, which include 11 million patients in New York City (NYC) and 16.8 million patients in Florida respectively. With a high-throughput causal inference pipeline using high-dimensional inverse propensity score adjustment, we identified a broad list of diagnoses and medications with significantly higher incidence 30-180 days after the laboratory-confirmed SARS-CoV-2 infection compared to non-infected patients. We found more PASC diagnoses and a higher risk of PASC in NYC than in Florida, which highlights the heterogeneity of PASC in different populations.


Subject(s)
COVID-19
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.28.21252645

ABSTRACT

The coronavirus disease 2019 (COVID-19) is heterogeneous and our understanding of the biological mechanisms of host response to the novel viral infection remains limited. Identification of meaningful clinical subphenotypes may benefit pathophysiological study, clinical practice, and clinical trials. Here, our aim was to derive and validate COVID-19 subphenotypes using machine learning and routinely collected clinical data, assess temporal patterns of these subphenotypes during the pandemic course, and examine their interaction with social determinants of health (SDoH). We retrospectively analyzed 14418 COVID-19 patients in five major medical centers in New York City (NYC), between March 1 and June 12, 2020. Using clustering analysis, four biologically distinct subphenotypes were derived in the development cohort (N = 8199). Importantly, the identified subphenotypes were highly predictive of clinical outcomes (especially 60-day mortality). Sensitivity analyses in the development cohort, and re-derivation and prediction in the internal (N = 3519) and external (N = 3519) validation cohorts confirmed the reproducibility and usability of the subphenotypes. Further analyses showed varying subphenotype prevalence across the peak of the outbreak in NYC. We also found that SDoH specifically influenced mortality outcome in Subphenotype IV, which is associated with older age, worse clinical manifestation, and high comorbidity burden. Our findings may lead to a better understanding of how COVID-19 causes disease in different populations and potentially benefit clinical trial development. The temporal patterns and SDoH implications of the subphenotypes may add new insights to health policy to reduce social disparity in the pandemic.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL